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Nonlinear absorption of surface acoustic waves by composite fermions
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Abstract. Absorption of surface acoustic waves by a two-dimensional electron gas in a perpen-
dicular magnetic field is considered. The structure of such system at the filling factor v close to 1/2
can be understood as a gas of compositeJermions. It is shown that the absorption at v = 1/2 can
be strongly nonlinear, while small deviation form 1/2 will restore the linear absorption. Study of
nonlinear absorption allows one to determine the force acting upon the composite fermions from
the acoustic wave at turning points of their trajectories.

Introduction

Two-dimensional electron gases (2DEG) have been intensely studied in the last years. One
ofthe experimental techniques used to investigate the properties ofthis system its interaction
with a surface acoustic wave (SAW). We will consider the 2DEG in the fractional quantum
Hall regime where a strong magnetic field is applied normal to the plane of the 2DEG. As
well known, close to the half filling of the lowest Landau level the system will exhibit a
metallic phase. This phase can be described in terms of a new type of quasiparticles, called
composite fermions. The theory of composite fermions, as formulated in the language of
Chern-Simons field theory in [1 ], has successfully explained the acoustic properties of the
electron gas [2]. So far, however, greatest attention, both experimentally and theoretically,
has been given to the linear response regime, which is appropriate for low intensity acoustic
waves. From the study of ultrasonic absorption by electrons in metals it is known [3] that
very interesting nonlinear effects can be observed. It is therefore natural to study nonlinear
effects in the context of SAW absorption by the composite fermion metallic state. In
particular are we interested in the fact that when nonlinear absorption occurs in a metal, a
weak external magnetic field will restore the linear absorption [4].

First we need to understand how the acoustic wave interacts with the electron gas. Two
mechanisms are usually considered, the deformational and the piezoelectric interactions.
In typical experimental sets the deformational interaction can be neglected, and we consider
only the piezoelectric field of the wave. Letting the x-axis point in the direction of sound
propagation this is then given by E(x, t) = E 0 sin e = -VD with D = ( 0 cos t. Here Q
is the SAW frequency, and ý = qx - wt is the wave coordinate; E 0 I q 11 i. By (D we
mean the screened electrostatic potential.

The sensitivity to external magnetic fields was explained in the following way. If the
wavelength 2 7r/q of the acoustic wave is much smaller than the electron mean free path E,
the electrons will traverse many periods of the wave before being scattered. If the electron
moves in such a way that the component of its velocity in the direction in which the
acoustic wave is propagating, it will experience a rapidly oscillating force. Consequently,
the interaction between this electron and the acoustic wave will be weak. Since the electron
(Fermi) velocity is much larger than the sound velocity, this will be the case for most of
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the electrons. Only a small group, called the resonant group, will have their velocities in
the sound propagation direction matched to the sound velocity, and thus interact strongly
with the wave. The linear absorption, which is obtained in the limit of an acoustic wave
of small (infinitesimal) amplitude, is determined by these resonant electrons. Consider a
finite amplitude wave. Some of the resonant electrons will then be trapped in the valleys of
the potential of the acoustic wave, see Fig. 1 (a). The trapped electrons, moving in complete

Untrapped Untrapped

n Trappcd/ Trapped B# 0

(a) V(b)

Fig. 1. On the trapping of resonant electrons in the absence (a) and in the presence (b) of an external
magnetic field B.

synchrony with the wave, will not contribute to the absorption, and the absorption decreases.
This leads to a amplitude dependent absorption coefficient, i.e. to nonlinear absorption.
Consider now the effect of an externally applied magnetic field. The electrons will feel an
extra force which will act to remove the electrons from the trapped group, see Fig. 1(b).
Thus, we expect the linear absorption to be restored by the application of a magnetic field.
The important point is that the magnetic force needed to restore the linear absorption gives
a direct measure of the trapping force from the acoustic wave. That is, from the strength
of the field needed to restore linear absorption we can infer the strength of the force from
the acoustic wave on the electrons.

Theory of nonlinear acoustic absorption

Let us recall the main facts of the Chern-Simons theory for the composite fermions [1].
The Chern-Simons transformation mapping the electron system to an equivalent system of
composite fermions can be described as attaching an even number of fictitious flux quanta
of Chern-Simons magnetic field to each electron. In the mean field approximation the
composite fermions will experience an effective field B* = B - m 0ono, where B is the
external field, m is the number of attached flux quanta, 00 = h/e is the flux quantum
and no is the electron density. If m = 2, the effective field will vanish if the Landau
level filling factor v = 1/2. The perturbation by the acoustic wave will induce a density
modulation in the electron gas, n = no + 6n. This will lead to an oscillating component
of the Chem-Simons magnetic field, so that the total effective field will be B* = B* + bac
with b"c = -2q 0 6n. In addition, the motion of the electrons will drag with it the attached
flux, and by Faraday law induce a Chern-Simons electric field, eac = (2q0/e) [2 x j].
The y-component of this field is found from the x-component of the current, which can be
related to the density modulation by the equation for conservation of charge. Assuming the
density modulation to be harmonic, 6n = (6n)o cos t, we get ec = 20ov,6n. We will later
see that this assumption is justified. As explained in [5] can we combine the x-component
of eac with the piezoelectric field of the acoustic wave. The corresponding total potential
will be denoted T4. The main objective of this work is to determine the trapping of the
electrons by the combined action of these fields, which are not present in the previously
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studied electron problem.
Now we use the Boltzmann equation to calculate the nonequilibrium distribution func-

tion, f, of composite fermions, from which the absorption can be found. The Hamiltonian
is

H = (P + eA)2 /2m - eP, (1)

where P is the canonical momentum (the kinematic momentum is p = P + eA), A is
the vector potential. The vector potential consists of two parts. One emerges from the
static external effective magnetic field B*, and one from the AC Chem-Simons field that
is created by the SAW-induced density modulation, the magnetic field is then bac =

200 [no - (27rh)-2 f d2 p f].
It is convenient to split the distribution function as f = fo (H) + fi where fo is the

Fermi function. Then the Boltzmann equation for fi is

Dfl/Dt + VpHVrfl - VrHVpfl + fl/" = -(aH/Dt)(afo/DH). (2)

Here we use the relaxation time approximation -fi /r for the collision operator which sig-
nificantly simplifies the calculations. It should be noted that the Hamiltonian (1) is written
in terms of the AC Chern-Simons magnetic field bac. The latter must be expressed through
the density modulation as an integral over the distribution function. The Boltzmann equa-
tion (2) is then in reality a complicated integro-differential equation for the non-equilibrium
distribution function. It is easy to show, however, that the main contribution to the density
modulation comes from the equilibrium part fio(H), so that in calculating fl we can ap-
proximate the density modulation with 6n(o) coming from fo (H). Indeed, using the fact
that in all the region of acoustic amplitudes e T << 6F, where 6F is the Fermi energy, we
can then expand fi0 (H) around the point H = p 2/2m. The lowest-order term, 6n(o), is
estimated as

S= -e%(27rh)- 2 f d2P (Df0/aH) 1,=p2 /2m = ge4J (3)

Here g = m/27r h2 is the density of states per spin (as usual, we assume the 2DEG to be fully
spin-polarized). Then we can solve Eq. (2) for fi with the assumption that 6n = 6n(0), and
come back to show that the non-equilibrium correction coming from fl is small compared
to 6n(o). This will then justify our assumption of a harmonic density perturbation.

Solving the Boltzmann equation (2) by the method of characteristics we find the distri-
bution function from which we calculate the absorption using the expression

p = ) (Hf), (4)

where (...) denotes average over the period of the acoustic wave. For the case v = 1/2,
B* = 0 we find, after rather tedious calculations, the result

P = C(erio/27r) 2 (Vs/VF) gwa, (5)

where C -1 is some numerical factor that can be found from numerical integration.

Here Flo = kJ0,! + c 2, a = 2 mvF/qhl and a = ((oor)-. oo = qle-FHo/m is the
typical oscillation frequency of the trapped electrons in the potential of the acoustic wave.
Since each scattering event rotates the particle momentum and leads to its escape from the
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resonant group, nonlinear behavior exists only if oTr >> 1, or a << 1 Thus a is the main
parameter responsible for nonlinear behavior. The above result (5) is the first term in an
expansion in powers of a. We see that the absorption decreases when there is pronounced
nonlinear behavior.

By studying the solution of (2) in the presence of a nonzero effective magnetic field we
find that as expected the absorption is restored to the value of the linear absorption. The
field necessary for this is B* > B, = q rO/VF.

Discussion

We can now see how the various fields contribute in the trapping of the composite fermions.
For electrons we would have (Do appearing in place of Flo in the expression for B,. In the
present case we can show using our solution of the Boltzmann equation that in the limit
of strong nonlinearity, a << 1, To = (Do. That is, the effect of the x-component of the
Chern-Simons field vanishes. In that case we have Flo = 10" 1 + -a 2 , the factor 1 + a 2

describing the trapping effect of the oscillating Chern-Simons magnetic field bac. Inserting
reasonable values, m = 10-3o kg, VF = 10 5 m/s, Vs = 3.10 3 m/s and Q /27r = 3.10 9 GHz,
we get a ; 50. We see that the effect of the Chern-Simons field is to considerably enhance
the efficiency of the acoustic wave in trapping composite fermions, and consequently that
the effective magnetic field necessary to restore linear absorption will be correspondingly
larger. Consequently, a way to check the above concept is first to reach nonlinear behavior
at B = B1 /2, then restore the linear behavior by changing magnetic field by a quantity
> Bc, without changing the SAW intensity.
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